Search results

1 – 3 of 3
Article
Publication date: 31 July 2023

Safia Akram, Maria Athar, Khalid Saeed, Mir Yasir Umair and Taseer Muhammad

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced…

Abstract

Purpose

The purpose of this study, thermal radiation and viscous dissipation impacts on double diffusive convection on peristaltic transport of Williamson nanofluid due to induced magnetic field in a tapered channel is examined. The study of propulsion system is on the rise in aerospace research. In spacecraft technology, the propulsion system uses high-temperature heat transmission governed through thermal radiation process. This study will help in assessment of chyme movement in the gastrointestinal tract and also in regulating the intensity of magnetic field of the blood flow during surgery.

Design/methodology/approach

The brief mathematical modelling, along with induced magnetic field, of Williamson nanofluid is given. The governing equations are reduced to dimensionless form by using appropriate transformations. Numerical technique is manipulated to solve the highly nonlinear differential equations. The roll of different variables is graphically analyzed in terms of concentration, temperature, volume fraction of nanoparticles, axial-induced magnetic field, magnetic force function, stream functions, pressure rise and pressure gradient.

Findings

The key finding from the analysis above can be summed up as follows: the temperature profile decreases and concentration profile increases due to the rising impact of thermal radiation. Brownian motion parameter has a reducing influence on nanoparticle concentration due to massive transfer of nanoparticles from a hot zone to a cool region, which causes a decrease in concentration profile· The pressure rise enhances due to rising values of thermophoresis and thermal Grashof number in retrograde pumping, free pumping and copumping region.

Originality/value

To the best of the authors’ knowledge, a study that integrates double-diffusion convection with thermal radiation, viscous dissipation and induced magnetic field on peristaltic flow of Williamson nanofluid with a channel that is asymmetric has not been carried out so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 October 2022

Meenakumari Ramamoorthy and Lakshminarayana Pallavarapu

The present work explores the influence of Hall and Ohmic heating effects on the convective peristaltic flow of a conducting Jeffrey nanofluid in an inclined porous asymmetric…

Abstract

Purpose

The present work explores the influence of Hall and Ohmic heating effects on the convective peristaltic flow of a conducting Jeffrey nanofluid in an inclined porous asymmetric channel with slip. Also, the authors investigated the impact of viscous dissipation, thermal radiation, heat generation/absorption and cross diffusion effects on the flow. Peristaltic flow has many industrial and physiological applications and most of the biofluids show the non-Newtonian fluid behaviour. Further, in a living body, several biofluids flow through different kinds of systems that are not symmetric, horizontal or vertical. The purpose of this paper is to address these issues.

Design/methodology/approach

The authors considered the flow of Jeffrey fluid which is generated by a sinusoidal wave propagating on the walls of an inclined asymmetric channel. The flow model is developed from the fixed frame to the wave frame. Finally, yield the nonlinear governing equations by applying the non-dimensional quantities with the assumptions of lengthy wave and negligible Reynolds number. The exact solution has been computed for the velocity and pressure gradient. The solutions for temperature and concentration are obtained by the regular perturbation technique.

Findings

Graphical analysis is made for the present results for different values of emerging parameters and explained clearly. It is noticed that the magnetic field enriches the temperature where it drops the fluid velocity. This work describes that the temperature field is decreasing due to the radiation but it is a rising function of temperature slip parameter. The temperature profile declines for growing values of the Hall parameter. The flow velocity diminishes for boosting values of the Darcy parameter. Further, the authors perceived that the concentration field reduces for large values of the chemical reaction parameter.

Originality/value

The authors validated and compared the results with the existing literature. This investigation will help to study some physiological systems, and heat transfer in peristaltic transport plays key role in medical treatments, so we ensure that these results are applicable in medical treatments like cancer therapy, drug delivery, etc.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 August 2016

R. Ellahi, M. M. Bhatti and Ioan Pop

The purpose of this paper is to theoretically study the problem of the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct under the effects of Hall and ion slip…

Abstract

Purpose

The purpose of this paper is to theoretically study the problem of the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct under the effects of Hall and ion slip. An incompressible and magnetohydrodynamics fluid is also taken into account. The governing equations are modelled under the constraints of low Reynolds number and long wave length. Recent development in biomedical engineering has enabled the use of the periastic flow in modern drug delivery systems with great utility.

Design/methodology/approach

Numerical integration is used to analyse the novel features of volumetric flow rate, average volume flow rate, instantaneous flux and the pressure gradient. The impact of physical parameters is depicted with the help of graphs. The trapping phenomenon is presented through stream lines.

Findings

The results of Newtonian fluid model can be obtained by taking out the effects of Jeffrey parameter from this model. No-slip case is a special case of the present work. The results obtained for the flow of Jeffrey fluid reveal many interesting behaviours that warrant further study on the non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear-thinning reduces the wall shear stress.

Originality/value

The results of this paper are new and original.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3